
2. Weak convergence.

Theorem 2.1. Riesz’s theorem says that a nonnegative linear function on the space of
continuous functions C(X) on a compact metric space X can be represented as

Λ(f) =

∫

f(x)µ(dx)

where µ is finite nonnegative countably additive measure on the Borel σ-field of X.

Proof. It involves many steps. We can assume with out loss of generality that Λ(1) = 1.

Step 1. For any closed set A ⊂ X define α(A) = inf{f≥0,f=1on A} Λ(f). α(·) is finitely
sub-additive on the class of closed sets and additive over disjoint unions.

Proof. If A,B are closed sets so is A ∪ B and α(A ∪ B) ≤ α(A) + α(B). There is an
f ≥ χA with Λ(f) ≤ α(A) + ǫ and a g ≥ χB with Λ(g) ≤ α(B) + ǫ. f + g ≥ χA∪B and
α(A∪B) ≤ Λ(f+g) = Λ(f)+Λ(g) ≤ α(A)+α(B)+2ǫ.. If A and B are disjoint closed sets
there is a continuous function φ with 0 ≤ φ ≤ 1 and φ = 0 on B and 1 on A (Urysohn’s
lemma). If f ≥ χA∪B, and Λ(f) ≤ α(A∪B)+ǫ, it follows that fφ ≥ χA and f(1−φ) ≥ χB .
α(A) ≤ Λ(fφ), α(B) ≤ Λ(g) and α(A)+α(B) ≤ Λ(fφ)+λ(f(1−φ)) = Λ(f) ≤ α(A∪B)+ǫ,
proving α(A ∪B) ≥ α(A) + α(B).

Step 2. For any open set G we define β(G) = supA⊂G α(A) the supremum taken over
closed sets A. β(·) is countably sub-additive on the class of open sets as well as countably
additive over disjoint union of open sets.

Proof. Let G = G1 ∪ G2 be a union of two open sets and A ⊂ G. Let A1 = A ∩ {x :
d(x,Gc

2) ≤ d(x,Gc
1)} and A2 = A∩{x : d(x,Gc

1) ≤ d(x,Gc
2)}. Clearly A = A1∪A2. Claim

A1 ⊂ G1. If not there is x ∈ A1, x ∈ Gc
1. d(x,Gc

1) = 0 and from the definition of A1,
d(x,Gc

2) = 0. This means x ∈ Gc
1 ∩Gc

2. Contradicts A ⊂ G1 ∪G2. A = A1 ∪A2. A1 ⊂ G1

and A2 ⊂ G2. It now follows that given ǫ > 0 there is A such that

β(G1 ∪G2) ≤ α(A) + ǫ ≤ α(A1) + α(A2) + ǫ ≤ β(G1) + β(G2) + ǫ

If G1 ∩ G2 = ∅ so is A1 ∩ A2 and β(G1 ∪ G2) ≥ α(A1) + α(A2). If {Gi} is a countable
disjoint collection then β(∪iGi) ≥

∑

i β(Gi). We have till now not used compactness. If
G = ∪iGi and A ⊂ G is a compact set ( closed set in a compact space) A ⊂ ∪n

i=1Gi for
some n. then β(G) ≤ β(A) + ǫ ≤ β(∪n

i=1Gi) + ǫ ≤
∑n

i=1 β(Gi) + ǫ.

Step 3. β(Ac) + α(A) = 1. More generally, if A ⊂ G then G = A ∪ (Ac ∩G) is a disjoint
union and β(G) = α(A) + β(G ∩Ac).

Proof. Clearly

β(Ac ∩G) + α(A) = sup
B⊂Ac∩G

α(B) + α(A) = sup
B⊂Ac∩G

α(A ∪B) ≤ sup
C⊂G

α(C) = β(G)

On the other hand for any closed set A and any ǫ > 0 there is an open set U ⊃ A such that
β(U) ≤ α(A)+ ǫ. To see this, note that by definition for any δ > 0 there is f ∈ C(X) such
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that f ≥ χA and Λ(f) ≤ α(A) + δ. There is a neighborhood U of A such that f ≥ 1− δ
on U and with δ′ = (1− δ)−1 − 1, (1 + δ′)f ≥ χU and for any C ⊂ U ,

α(C) ≤ Λ((1 + δ′)f) = (1 + δ′)(α(A) + δ) = α(A) + ǫ

if we choose δ small enough. Therefore β(U) ≤ α(A) + ǫ. Find V an open set such that
A ⊂ V ⊂ V ⊂ U . Then G ⊂ U ∪ (G ∩ (V )c).

β(G) ≤ β(U) + β(G ∩ (V )c) ≤ α(A) + β(G ∩Ac) + ǫ

Step 4. For any set E we define

µ∗(E) = inf
G⊃E

β(G); µ∗(E) = sup
A⊂E

α(A)

The class E of sets E for which µ∗(E) = µ∗(E) is a σ-field and µ(E) = µ∗(E) = µ∗(E) is
a countably additive measure on E . E contains all open and closed sets and hence includes
B the Borel σ-field. .

Proof. E ∈ E if and only if given any ǫ > 0 there are sets A,G such that A is closed,
G is open A ⊂ E ⊂ G and β(G) − α(A) < ǫ. If A ⊂ E ⊂ G then Gc ⊂ Ec ⊂ Ac and
β(Ac) − α(Gc) = β(Ac\Gc) = β(G\A) = β(G) − β(A) < ǫ.E is closed under finite unions
and µ is additive over finite disjoint unions. Since E has been shown to be a field, to prove
it is a σ-field, we need to consider only countable disjoin unions. We have disjoint {Ei}
and Gi ⊃ Ei ⊃ Ai with β(Gi\Ai) ≤ ǫ2−i. β(∪iGi)−

∑

i α(Ai) ≤ ǫ.
∑

α(Ai) is convergent
and therefore for some finite n, β(∪iGi)−

∑n
i=1 α(Ai) ≤ 2ǫ. That closed sets are in E was

shown in step 3.

Step 5.

Λ(f) =

∫

f(x)µ(dx)

Proof. Can assume 0 ≤ f ≤ 1. Given ǫ > 0 we can find a finite number of closed disjoint
sets A1, A2, . . . , An such that

∑n
i=1 µ(Ai) ≥ µ(X)− ǫ and supx∈Ai

f(x)− infx∈Ai
f(x) ≤ ǫ

for every i. Let Ui be open sets that are again disjoint and Ui ⊃ Ai for every i. Let gi be
continuous functions 0 ≤ gi(x) ≤ 1, gi(x) = 1 on Ai and gi(x) = 0 for x /∈ Ui. We have
f ≥

∑

i[infx∈Ai
f(x)]gi(x).

Λ(f) ≥
∑

i

[ inf
x∈Ai

f(x)]Λ(gi)

≥
∑

i

[ inf
x∈Ai

f(x)]µ(Ai)

≥
∑

i

∫

Ai

f(x)dµ− ǫµ(Ai)

=

∫

f(x)dµ− 2ǫµ(X)
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Since ǫ is arbitrary Λ(f) ≥
∫

fdµ. The same is true with 1 − f . Together they imply
Λ(f) =

∫

fdµ.

Theorem 2.2. Let X be a complete separable metric space and µ a countably additive
finite measure with µ(X) = 1. Then for any ǫ > 0 there is a compact set Kǫ such that
µ(Kǫ) ≥ 1− ǫ.

Proof. By Lindelof property X = ∪∞
j=1S(xj, ǫ). By countable additivity of the measure,

with ǫi = 1
i
there is some ni spheres around {xi,j} of radius 1

i
with their union having

measure at least 1− ǫ2−i. Then

µ[∩∞
i=1 ∪

ni

j=1 S(xi,j, ǫi)] ≥ 1− ǫ

and ∩∞
i=1∪

ni

j=1S(xi,j, ǫi) is totally bounded and is essentially compact in a complete metric
space.

Weak Convergence. We say that µn converges weakly to µ or µn ⇒ µ if
∫

fdµn →
∫

fdµ
for all f ∈ C(X). If X is compact the space M of probability measures on X is compact
in the weak topology. Because C(X) is separable we can choose a subsequence such that
∫

fdµn has a convergent subsequence for a dense set of f and so for every f . The limit is
a non negative linear functional Λ(f) with Λ(1) = 1 and we can use the Riesz theorem.

It is enough if most of the mass is supported on a compact set. If P is a collection of
measures from M such for any ǫ > 0, there is a compact set Kǫ such that µ(Kǫ) ≥ 1− ǫ
for all µ ∈ P then any sequence from P will have a weakly convergent subsequence. The
condition is sufficient in all separable metric spaces but also necessary if the space is
complete.

Problem. Can you generalize the notion of positive definiteness to functions that are not
necessarily continuous? Does that characterize Fourier transforms of nonnegative functions
in Lp(R

d), 1 < p ≤ 2?

Problem. If probability measures µn ⇒ µ weakly and g ≥ 0 is a function not necessarily
bounded then show that lim infn→∞

∫

fdµn ≥
∫

fdµ. If |f | ≤ Cg and limn→∞

∫

gdµn =
∫

gdµ then show that limn→∞

∫

fdµn =
∫

fdµ.

Problem. If probability measures µn ⇒ µ on a compact metric space X and if F is a
family of equi-continuous functions, (i.e if xn → x then supf∈F |f(xn)− f(x)| → 0), show
that

sup
f∈F

∣

∣

∣

∣

∫

f(x)dµn −

∫

f(x)µ(dx)

∣

∣

∣

∣

→ 0

What if X is only complete and separable (not necessarily compact)?

Theorem 2.3. X is a separable metric space. µn is a sequence of probability distributions
on X.The following are equivalent.

1. µn ⇒ µ i.e. for any f ∈ C(X), limn→∞

∫

fdµn =
∫

fdµ.

2. For any uniformly continuous bounded function f , limn→∞

∫

fdµn =
∫

fdµ.

3. For any closed set C, µ(C) ≥ lim supn→∞ µn(C)
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4. For any open set G, µ(G) ≤ lim infn→∞ µn(G)

5. For any continuity set A, i.e. a set for which µ(Ā) = µ(Ao), limn→∞ µn(A) = µ(A)

Proof. That 1 implies 2 is trivial. To prove 2 implies 3 let C be a closed set. Consider
the function f(x) = 1

1+d(x,C) . f is uniformly continuous, bounded by 1, f = 1 on C and

0 < f < 1 on Cc. In particular fk(x) = [f(x)]k ↓ 1C(x).

µ(C) = lim
k→∞

∫

fk(x)dµ = lim
k→∞

lim sup
n→∞

∫

fk(x)dµn ≥ lim sup
n→∞

µn(C)

Taking complements 3 and 4 are equivalent.

µ(Ā) ≥ lim supµn(Ā) ≥ lim supµn(A) ≥ lim inf µn(A) ≥ lim inf µn(A
o) ≥ µ(A0)

If the ends are equal then there is equality everywhere. So 3 and 4 imply 5.. Finally
5 implies 1. Tp see this id |f | ≤ M the interval [−M,M ] can be divided into N dis-
joint subintervals {Ij} such that x : f(x) ∈ Ij are continuity sets. f can be uniformly
approximated by fN (x) =

∑

aj1Ij and
∫

fN (x)dµn →
∫

fNdµ.

We saw that in a complete separable metric space any probability measure is essentially
supported on a compact set, in the sense that for any positive ǫ > 0 there is a compact set
Kǫ such that µ(Kǫ) ≥ 1 − ǫ. We are interested in characterizing compact subsets of the
space of probability distributions under weak convergence on a complete separable metric
space.

Theorem 2.4. Let P be a subset of the space of probability distributions M(X) on a
separable metric space X, such that given any ǫ > 0, there is a compact set Kǫ ⊂ X

such that µ(Kǫ) ≥ 1 − ǫ for all µ ∈ P. Then given any sequence µn from P, there is a
subsequence that converges weakly to a limit µ ∈ M(X). The condition is also necessary
if the space X is complete.

Proof. First let us observe that if X is compact then M(X) is compact under he weak
topology. Given µn we consider the linear functionals Λn(f) =

∫

fdµn. If X is compact
C(X) is separable we can chose a subsequence of Λn (which we will continue to denote by
Λn) that converges for a dense set of continuous functions, which will then converge for all
continuous functions. This limit is a nonnegative linear functional with Λ(1) = 1 and by
Riesz theorem is represented by a measure. The subsequence of probability distributions
clearly converges to µ in the weak topology. For each ǫ we can define µǫ

n as the restriction
of µn to Kǫ, normalized to be a probability distribution. µǫ

n(E) = 1
µn(Kǫ)

µn(Kǫ ∩E). For

each ǫ, µǫ
n(E) are supported on the compact setKǫ and will have a convergent subsequence.

By diagonalization we can assume that choosing a sequence ǫj → 0, limn→∞ µj
n = µj and

because ‖µi
n − µj

n‖ ≤ ǫi + ǫj , it follows that ‖µ
i − µj‖ ≤ ǫi + ǫj and µ = limj→∞ µj exists

and µn ⇒ µ.

To prove the converse we will use Dini’s theorem which says that if a sequence of upper
semi continuous functions fn(x) on X decreases monotonically to 0, the convergence is
uniform over compact subsets of X. Given ǫ > 0 for each x ∈ X there is nǫ(x) such
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that fnǫ(x)(x) < ǫ. By upper semi continuity fnǫ(x)(y) < 2ǫ for y in a neighborhood Nǫ,x

around x. Given a compact set K ⊂ X there is a finite sub cover Nǫ,xj
of K and by the

monotonicity of the sequence fn(y) ≤ 2ǫ for n ≥ supj Nǫ,xj
on K.

Proceeding with the proof of the converse, we use the Lindelof property to write for any
k, X = ∪jS(xj ,

1
k
). Then with Gn,k = ∪n

j=1S(xj ,
1
k
), for each k, µ(Gn,k) ↑ 1 as n → ∞.

Since µ(G) is a lower semicontinuous function of µ for every open set G, for every k,

lim
n→∞

inf
µ∈P

µ(Gn.k) = 1

Given ǫ and k, there is a N(k, ǫ) such that

inf
µ∈P

µ(GN(k,ǫ),k) ≥ 1− ǫ2−k

For every ǫ > 0, the set ∩kGN(k,ǫ) is totally bounded and

inf
µ∈P

µ[∩kGN(k,ǫ)] ≥ 1− ǫ
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